Time-frequency Representation for Classification of the Transient Myoelectric Signal
نویسندگان
چکیده
An accurate and computationally efficient means of classifying myoelectric signal (MES) patterns has been the subject of considerable research effort in recent years. Effective feature extraction is crucial to reliable classification and, in the quest to improve the accuracy of transient MES pattern classification, many forms of signal representation have been suggested. It is shown that feature sets based upon the short-time Fourier transform, the wavelet transform, and the wavelet packet transform provide an effective representation for classification, provided that they are subject to dimensionality reduction by principal components analysis.
منابع مشابه
Classification of the myoelectric signal using time-frequency based representations.
An accurate and computationally efficient means of classifying surface myoelectric signal patterns has been the subject of considerable research effort in recent years. Effective feature extraction is crucial to reliable classification and, in the quest to improve the accuracy of transient myoelectric signal pattern classification, an ensemble of time-frequency based representations are propose...
متن کاملThe Transient Behavior of LC and Ring Oscillators under External Frequency Injection
In this work, time domain analysis is used to solve Adler’s equation in order to obtain the required time, for an oscillator under external injection, reaching the steady-state condition. Mathematical approach has been applied to fully describe the transient of frequency acquisition in injection-locked LC and Ring oscillators considering their time-varying nature. Then, the analysis is verifie...
متن کاملComplex feature analysis of center of pressure signal for age-related subject classification
Purpose: The aim of this study was to characterize prolonged standing and its effect on postural control in elderly individuals in comparison to adults.Materials and Methods: The elderly individuals’ behavior during standing and how demanding such a task is for them, is still unknown. We recorded the center of pressure (COP) position of 12 elder and 15 young participants while they were standin...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملWavelet Transformation
Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation. Introduction: The...
متن کامل